

Problem

Learn a representation where semantic similarity encoded as distance

Disadvantages of Current Loss functions

1) **Pair Based** e.g. triplet, contrastive, n-tuplet loss

2) Proxy Based e.g. Proxy Anchor, ProxyNCA

Less effective as no sample-sample comparison information is used

Proposed Solution: PFML

Use a **continuous potential field** to directly model **all** interactions Adv #1 No complex mining needed Adv #2 Better features (all Interactions modeled)

Each point induces attractive & repulsive potentials **Big Change:** Interaction strength (force) decays with distance

Potential Field Based Deep Metric Learning Shubhang Bhatnagar, Narendra Ahuja

Example Potential fields Ψ_1 and Ψ_2 by PFML for a 2 class problem

Class potential field (Ψ) = Superposition of individual fields, models net force applied **on** embeddings Net force on embedding of Class N = Gradient of Class N potential field Ψ_N at its location

Adv. #3 Label Noise Resilience & Intra-Class Feature Preservation. The decaying strength of interaction ensures Ψ_1 and Ψ_2 draw embeddings towards nearby same class embeddings, unlike past methods that push them toward distant class embeddings, which may be very different variants of the class or a mislabeled point

PFML also uses proxies to augment embedding fields

Adv #4 Better use of Proxies vs Previous Methods. As they better data represent distribution due to PFML having decaying interaction strength

${\bf Benchmarks} \rightarrow$	CUB-200		Cars-196		SOP				
Methods \downarrow (Chronological)	R@1	R@2	R@1	R@2	R@1	R@10			
${ m ResNet50}~(512~{ m dim})$									
Proxy Anchor	69.7	80.0	87.7	92.9	-	-			
MS+DAS	69.2	79.2	87.8	93.1	80.6	91.8			
HIST	71.4	81.1	89.6	93.9	81.4	92.0			
CPML (Sec. 3.4)	68.3	78.7	85.2	91.5	79.4	90.7			
Potential Field (Ours)	73.4	82.4	92.7	95.5	82.9	92.5			
DINO (384 dim)									
DINO	70.8	81.1	42.9	53.9	63.4	78.1			
Нур	80.9	87.6	89.2	94.1	85.1	94.4			
HIER	81.1	88.2	91.3	95.2	85.7	94.6			
Potential Field (Ours)	83.1	89.3	94.7	96.5	86.5	95.1			
ViT (384 dim)									
ViT-S	83.1	90.4	47.8	60.2	62.1	77.7			
Нур	85.6	91.4	86.5	92.1	85.9	94.9			
Potential Field (Ours)	87.8	92.6	91.5	95.2	88.2	95.7			

Much n to La (20%)

Evaluation of Metric Space SOTA for Zero Shot Image Retrieval

moro robuct	$\mathbf{Benchmarks} \rightarrow$	CUB-200		Cars-196			
nore robust	Methods	R@1	R@2	R@1	R@2		
bel Noise	Multi Similarity	58.9	71.8	70.4	79.8		
corruption)	Proxy Anchor	60.7	75.1	76.9	83.1		
con uption)	HIST	59.7	74.6	72.9	81.8		
	Potential Field	66.7	76.9	84.5	88.6		