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Introduction: What is Deep Metric Learning ?

Problem
Learn a representation where semantic similarity encoded as distance

(distance in representation space = semantic dissimilarity)

A t-sne visualization of a semantic representation space learnt using PFML



Deep Metric Learning: Past Work & Motivation

Current Methods

Tuple Based

Sample tuple of embeddings 

(pair of same class samples with rest being dissimilar 
examples)

e.g. triplet, contrastive, n-tuplet loss

Proxy Based

Use class centers (proxies), moving samples of each class  
towards their respective proxies

e.g. Proxy Anchor, ProxyNCA
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Distance between samples 
of the same class

Distance between 
samples of different class

<

Enforce :

Setting: No fine-grained similarity information between images available beyond class labels for training



Deep Metric Learning: Past Work & Motivation

Tuple Based

Need high complexity sample mining strategies to work
 (O(N3) for triplets among N samples)

Disadvantages:
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Disregards overall representation space, 
modelling only a subset of interactions 

Reduced feature quality and 
more susceptibility to noise
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Disregards overall representation space, 
modelling only a subset of interactions 

Reduced feature quality and 
more susceptibility to noise

Proxy Based

Less effective as no sample-sample comparison 
information is used
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Can we better model interactions 
between the whole embedding 
space ?



PFML: Potential Field Based Metric Learning
PFML models interactions between samples 

using a continuous potential field

Each point induces both:
• an attractive potential toward same-class 

examples
• a repulsive potential pushing away from 

different-class examples

This encourages intra-class clustering and inter-class 
separation in the learned representation space.

A toy problem with embeddings from 2 classes shown. 
Similar embeddings move together and dissimilar ones 
apart under the influence of our potential field
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Class Potential Field and Net Force
•A class potential field Ψ₁ is the superposition of fields from all 
samples.

Ψ₁ models the force acting on embeddings of class 1 due to:
•Repulsion from all other class embeddings
•Attraction from all same class embeddings

Net force on embedding = Gradient of class potential field Ψ₁ 
at embedding



PFML: Functional Form of Individual Potential
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Design of Individual potential field brings about a major 
design change 

Decaying gradient (force) with distance
In contrast with all current works that have increasing 

or constant force with distance

a) It helps  learning in presence of:
• Annotation/ Label noise
• Large intra-class variations

b) Superposition of potentials still yields local extremum 
near embeddings (Theoretically Proven in 

proposition 1 & Corollary 1 of the supplement)



PFML: Approach

Proxies to augment Potential
• Proxies model the potential field 

due to out of batch embeddings
• They are trainable parameters 

affected by the field

Training by minimizing  total 
potential Energy

Example fields generated in a 2 class toy example. 
Embeddings are drawn to nearest points from the same class
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PFML: Summary



Results: Benchmarks
DML Benchmark: Zero-Shot Image Retrieval using 3 datasets
(1) Cars-196 dataset 

(2)  CUB-200-2011 dataset
(3) Stanford Online Products (SOP) dataset

Follows Standard Evaluation Setting : Half of the classes used for training, while remaining half are used for testing
Recall@K used for evaluation



Results: Image Retrieval

State-of-the-art R@K performance

• Gains of 2.1% and 2% R@1 on Cars 
and CUB over previous SOTA (HIST 
[1]), 

•  double the gains achieved by HIST 
[1]  over SOTA before it

• Consistent gains using all backbones 
(ResNet, Vision transformers, 
Inception) on all 3 benchmarks

[1] Lim, Jongin, Sangdoo Yun, Seulki Park, and Jin Young Choi. "Hypergraph-induced semantic tuplet loss for deep metric 

learning." In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 212-222. 2022.



Results: Noisy labels

DML Performance in Presence of Label 
Noise
• Real world datasets often contain 

significant label noise

• Potential Field helps robustness in 
presence of label noise due to its 

1. Decay
2. Modelling relations between all 

samples

•  Outperforms SOTA by more than 6% and 
7.6 % in terms of R@1 on CUB200 and 
Cars-196 in presence of 20% label noise 



Results: Ablation

Number of Proxies (M)
Using more proxies boosts 
performance before saturating
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Radius Parameter delta
Doesn’t seem to significantly 
effect performance
 

Trend of PFML Performance on 2 datasets 



Results: Ablation

Rate of Decay alpha
Stronger decay better than very 
mild decay
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Is extending repulsion good ?
No, as it compressing intra-class 
features more than needed
 

Trend of PFML Performance on 2 datasets 



Conclusion
PFML

• Introduces a novel continuous potential field 
model for capturing all-sample interactions.

• Its decaying with distance influence model
a) Significantly boosts robustness to label noise and

b) Enhances proxy alignment with training data, leading 
to improved performance.

• Achieves SOTA (State-of-the-Art) performance in 
zero-shot image retrieval, both in the presence and 
absence of label noise.

Project Page
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