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Introduction: What is Deep Metric Learning ?

Problem

Learn a representation where semantic similarity encoded as distance
(distance in representation space = semantic dissimilarity)

A t-sne visualization of a semantic representation space learnt using PFML
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Deep Metric Learning: Past Work & Motivation

Setting: No fine-grained similarity information between images available beyond class labels for training

Current Methods

Tuple Based Proxy Based

Sample tuple of embeddings Use class centers (proxies), moving samples of each class

(pair of same class samples with rest being dissimilar towards their respective proxies
examples)
Enforce :
Distance between samples < Distance between
of the same class samples of different class
e.g. triplet, contrastive, n-tuplet loss e.g. Proxy Anchor, ProxyNCA
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Deep Metric Learning: Past Work & Motivation

Disadvantages:

Tuple Based

Need high complexity sample mining strategies to work
(O(N3) for triplets among N samples)

Disregards overall representation space, |:> Reduced feature quality and
modelling only a subset of interactions more susceptibility to noise

M ILLINOIS



Deep Metric Learning: Past Work & Motivation

Disadvantages:

Tuple Based

Need high complexity sample mining strategies to work
(O(N3) for triplets among N samples)

Disregards overall representation space, |:> Reduced feature quality and
modelling only a subset of interactions more susceptibility to noise

5

M ILLINOIS



Deep Metric Learning: Past Work & Motivation

Disadvantages:
Tuple Based
i g o
Need high complexity sample mining strategies to work / o
(O(N?3) for triplets among N samples) o
o ®
A 4
. [
Disregards overall representation space, |:> Reduced feature quality and o

modelling only a subset of interactions

Proxy Based

Less effective as no sample-sample comparison
information is used

more susceptibility to noise

Can we better model interactions
between the whole embedding
space ?
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PFML: Potential Field Based Metric Learning

PFML models interactions between samples
using a continuous potential field

Each point induces both:
* an attractive potential toward same-class
examples
* arepulsive potential pushing away from
different-class examples

This encourages intra-class clustering and inter-class
separation in the learned representation space.

Class Potential field W,

Increasing Potential —»

A toy problem with embeddings from 2 classes shown.
Similar embeddings move together and dissimilar ones

apart under the influence of our potential field
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PFML: Potential Field Based Metric Learning

Class Potential Field and Net Force
*A class potential field W, is the superposition of fields from all
samples.

W; models the force acting on embeddings of class 1 due to:
*Repulsion from all other class embeddings
*Attraction from all same class embeddings

Net force on embedding = Gradient of class potential field W,
at embedding

Class Potential field W,

Increasing Potential —»

A toy problem with embeddings from 2 classes shown.
Similar embeddings move together and dissimilar ones

apart under the influence of our potential field
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PFML: Functional Form of Individual Potential

Design of Individual potential field brings about a major
design change

Decaying gradient (force) with distance
In contrast with all current works that have increasing
\ (.6_; A 5 or constant force with distance
/

Distance from Embedding
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- - a) It helps learning in presence of:
Embedding Z; « Annotation/ Label noise
\ * Large intra-class variations
AN b) Superposition of potentials still yields local extremum
near embeddings (Theoretically Proven in
proposition 1 & Corollary 1 of the supplement)

Repulsion Potential

Distance from Embedding
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PFML: Approach

Proxies to augment Potential

* Proxies model the potential field
due to out of batch embeddings

* They are trainable parameters
affected by the field

Training by minimizing total
potential Energy
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(a) Class Potential field ¥,

X —» Class 1 Samples
* —» Class 1 Proxy

Increasing Potential ——»

(b) Class Potential field ¥,

Class 1 Samples
+ Class 1 Proxy
Class 2 Samples

%

™

Increasing Potential —»

Example fields generated in a 2 class toy example.
Embeddings are drawn to nearest points from the same class
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PFML: Summary

Sample Embeddings Class Proxies
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Results: Benchmarks

DML Benchmark: Zero-Shot Image Retrieval using 3 datasets
(1) Cars-196 dataset

(2) CUB-200-2011 dataset

(3) Stanford Online Products (SOP) dataset

Follows Standard Evaluation Setting : Half of the classes used for training, while remaining half are used for testing
Recall@K used for evaluation
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Results: Image Retrieval

State-of-the-art R@K performance

Gains of 2.1% and 2% R@1 on Cars
and CUB over previous SOTA (HIST

[1]),

~ double the gains achieved by HIST
[1] over SOTA before it

Consistent gains using all backbones
(ResNet, Vision transformers,
Inception) on all 3 benchmarks

[Benchmarks — | CUB-200-2011 I Cars-196 SOP |
Methods | (Chronological) R@1 R@2 R@4 R@l R@2 R@4 R@1 R@10 R@100
ResNet50 (512 dim)

ESPHN [54] 64.9 75.3 83.5 82.7 89.3 93.0 78.3 90.7 96.3
N.Softmax [58] 61.3 73.9 83.5 84.2 90.4 94 .4 78.2 90.6 96.2
DiVA [32] 69.2 79.3 - 87.6 929 - 79.6 91.2 -
Proxy NCA++ [46] 04.7 - - - 85.1 - -79.6 - -
Proxy Anchor [21] 69.7 80.0 87.0 87.7 929 95.8 - - -
DCML-MDW [59] 68.4 77.9 86.1 85.2 91.8 96.0 79.8 90.8 95.8
MS+DAS [29] 69.2 79.2 87.1 87.8 93.1 96.0 80.6 91.8 96.7

| HIST [28] 71.4 81.1 88.1 80.6 93.9 96.4 81.4 92.0 96.7
HIER][22] 70.1 79.4 86.9 88.2 93.0 95.6 80.2 91.5 96.6
HSE-PA [55] 70.6 80.1 87.1 89.6 93.8 96.0 80.0 91.4 96.3
CPML (Sec. 3.4) 68.3 78.7 86.2 85.2 91.5 95.2 79.4 90.7 96.1

Potential Field (Ours)

734+ 0.3 824+ 0.1 88.8+0.1

92,7+ 0.3 95.5 + 0.1 97.6-£ 0.1

829+ 0.2 92.5 £ 0.2 96.8 + 0.1

BN Inception (512 dim)
HTL [13] 57.1 68.8 78.7 814 88.0 92.7 74.8 88.3 94.8
MultiSimilarity [50] 65.7 77.0 86.3 84.1 90.4 94.0 78.2 90.5 96.0
SoftTriple [35] 65.4 76.4 845 84.5 90.7 94.5 78.3 90.3 95.9
CircleLoss [43] 66.7 774 86.2 83.4 89.8 94.1 78.3 90.5 96.1
DiVA [32] 66.8 71.7 - 84.1 90.7 - 78.1 90.6 -
ProxyGML [61] 66.6 71.6 86.4 85.5 91.8 953 78.0 90.6 96.2
Proxy Anchor [21] 68.4 79.2 86.8 86.1 91.7 95.0 79.1 90.8 96.2
DRML.-PA [60] 68.7 78.6 86.3 86.9 92.1 95.2 71.5 85.2 93.0
MS+DAS [29] 67.1 7811 864 85.7 91.6 953 782 903 96.0
| HIST [28] 69.7 80.0 87.3 87.4 92.5 95.4 79.6 91.0 96.2
DFML-PA [48] 69.3 - - 88.4 - - - - -
HSE-M [55] 67.6 78.0 858 82.0 889 933 - - -
PA+niV [23] 69.5 80.0 - 86.4 92.0 - 79.2 90.4 -
Potential Field (Ours) 71.5+ 0.3 81.2+0.2 88.3+0.2 || 90.1+0.2 93.9+0.1 96.3+0.1 ||{80.6 £ 0.3 91.8 + 0.1 96.4 £ 0.1
DINO (384 dim)
DINO [5] 70.8 81.1 88.8 429 53.9 64.2 63.4 78.1 88.3
Hyp [12] 80.9 87.6 924 89.2 94.1 96.7 85.1 94.4 97.8
HIER [22] 81.1 88.2 93.3 91.3 95.2 97.1 85.7 94.6 97.8
Potential Field (Ours) 83.1 £ 0.3 89.3 1 0.2 94.2 L 0.1]|94.7 £ 0.196.5 = 0.1 97.8 * 0.1]|86.5 £ 0.3 95.1 = 0.3 98.0 £ 0.2
ViT (384 dim)
VIT-S [11] 83.1 90.4 94.4 47.8 60.2 72.2 62.1 7.7 89.0
Hyp [12] 85.6 91.4 94 8 86.5 92.1 953 85.9 949 98.1
HIER [22 85.7 91.3 94.4 88.3 93.2 96.1 86.1 95.0 98.0

Potential Field (Ours)

87.8 £ 0.2 92.6 + 0.2 95.7 = 0.1

91.5 +0.395.2 +£0.297.4 + 0.1

88.2 + 0.1 95.7 + 0.1 98.6 + 0.1

[1] Lim, Jongin, Sangdoo Yun, Seulki Park, and Jin Young Choi. "Hypergraph-induced semantic tuplet loss for deep metric
learning." In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 212-222. 2022.
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DML Performance in Presence of Label

Noise

Real world datasets often contain
significant label noise

Potential Field helps robustness in
presence of label noise due to its

1. Decay

2. Modelling relations between all
samples

Outperforms SOTA by more than 6% and
7.6 % in terms of R@1 on CUB200 and
Cars-196 in presence of 20% label noise

Results: Noisy labels

CUB-200-2011 Cars-196

Methods |[R@1 R@2 R@1 R@2
Triplet[51][55.1 68.7 675 77.9

MS [50] ||58.9 71.8 70.4 79.8
PNCA[33]/60.1 74.7 743 82.4
PA[21] ||60.7 75.1 76.9 83.1
HIST[27] |[59.7 74.6 72.9 81.8
Ours 66.7 £ 0.6 769 0.3 ||84.5- 0.5 88.6L 0.3
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Results: Ablation

Trend of PFML Performance on 2 datasets

(a) R@1l vs M
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Using more proxies boosts
performance before saturating

(b) R@1 vs &
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Doesn’t seem to significantly
effect performance
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Results: Ablation

Trend of PFML Performance on 2 datasets

(c) R@1l vs a
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Rate of Decay alpha
Stronger decay better than very
mild decay

(d) R@1 VS &rep — Oatr
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Is extending repulsion good ?
No, as it compressing intra-class
features more than needed
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Conclusion

PFML

* Introduces a novel continuous potential field
model for capturing all-sample interactions.

* |ts decaying with distance influence model
a) Significantly boosts robustness to label noise and

b) Enhances proxy alignment with training data, leading
to improved performance.

* Achieves SOTA (State-of-the-Art) performance in
zero-shot image retrieval, both in the presence and
absence of label noise.

Class Potential field W,
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