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Method
Step -1 : Initial Logits Estimation
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Rice, Asparagus, Chicken Chicken, Beans, Orange

b. Multi-Label Data
(FoodSeg103)

We associate multiple labels with each image (as shown in
(b)), casting the problem as Multi-Label Recognition (MLR)
where the goal is to identify all items in an image.

Our Contributions

The occurrences of food items (labels) in dish are
correlated. Previous methods detect them independently,
thus overlooking valuable co-occurrence information.

We obtain initial food item logits using CLIP, and refine
them to enforce the label correlations seen in training data
using a graph convolution network (GCN)

We propose a nhew loss function, the Re-weighted
Asymmetric Loss (RASL), to address the sample imbalance
problem arising from limited food samples in training data.

Our approach surpasses all SOTA MLR methods on food
datasets.

between text features for each food item and the image
features, giving an initial set of logits.

Step -2 : Refining Logits using Conditional Prior
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* Initial Logits are refined by a GCN, using

the label correlation extracted from the training data.

 We train the framework end-to-end using our proposed Re-
weighed ASL (RASL), which helps mitigate class imbalance
in the dataset.

FoodSeg-103 and UNIMIB dataset over SOTA previous MLR
works.

How does our method affect performance on classes that

Improvement of more than 4% and 11% in mAP on

are difficult to visually recognize ?

UNIMIB FoodSeg103
DualCoOp Ours w/o reweigh Ours|DualCoOp Ours w/o reweigh Ours
CP 25.4 41.9 57.6| 13.7 14.8 28.7
CR 26.2 57.5 60.0/ 19.7 22.5 26.9
CF1|| 24.3 44.9 59.1| 16.5 18.7 28.4

Our approach that models class co-occurrences significantly
benefits MLR performance of such classes.

( mean performance of worst 10 classes shown )
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